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1. Object of Paper.

The object of the present paper is to show that when any number of electrons
are moving in any manner the functions which define the resulting electrodynamic
field, namely, the three components of dielectric displacement in the aether and the
three components of the magnetic force at every point of the field, can be ex-
pressed in terms of the derivates of two scalar potential functions.(Previous writ-
ers have expressed them in terms of a scalar potential function and a vector poten-
tial function, which are equivalent to four scalar potential functions.)These two
scalar potential functions are explicitly evaluated in terms of the charges and co-
ordinates of the electrons.It is then shown that from these results the general
functional form of an electrodynamic disturbance due to electrons can be derived.

1. Explanation of Notation, and Summary of previously known Results.

The work of previous writers, so far as it concerns the present investigation
and explains the notation used, may be briefly summarized as follows:—

Let � be the volume density of electricity at any place and time, and letvx, vy,
vz be the components of its velocity, and c the velocity of light in the aether. Let
dx, dy, dz be the three components of the dielectric displacement in the aether, and
hx, hy, hz the three components of the magnetic force.Then the fundamental equa-
tions of electrodynamics may be written in Lorentz’s form (the units being suit-
ably chosen):
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In place ofdx, dy, dz, hx, hy, hz, we can define the field by a scalar potential
function � and three functionsax, ay, az, which are usually regarded as the three
components of a vector potential.The quantitiesdx, dy, dz, hx, hy, hz are given in
terms of� , ax, ay, az by the equations

dx = −
1

c

∂ax
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−

∂ay
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,

and four similar equations fordy, dz, hy, hz.
The scalar potential and the three components of the vector potential satisfy

the system of equations
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For the fundamental case, namely, that in which the field is due to any number
of electrons moving in any way, the scalar potential and the three components of
the vector potential are given by the equations

� (x, y, z, t) = Σ
ec

4�
1

cr + rv cos(v, r )
, ax(x, y, z, t) = Σ

e

4�
vx

cr + rv cos(v, r )
,

and two similar equations foray andaz, wheree is the charge on a typical elec-
tron, r is its distance from the point (x, y, z), v is its velocity, (vx, vy, vz) the com-
ponents ofv, (v, r ) the angle between the direction ofv and r, and the bars over
the letters mean that the position of the electron considered is that which it occu-
pied at a timet − r /c; and the summation is taken over all the electrons.We shall
assume throughout the paper that the velocities of all the electrons are less than
the velocity of radiation.

1. Introduction and Evaluation of the two Scalar Potentials.

Now let x′(t), y′(t), z′(t) denote the position of the electrone at timet; and let
x′ be used to denotex′(t − r /c), so thatx′, y′, z′ are known
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functions ofx, y, z, t, when the motions of the electrons are known; we have
r 2 = (x′ − x)2 + (y′ − y)2 + (z′ − z)2, and therefore

r
∂r

∂x
= − (x′ − x) − { ( x′ − x)vx + (y′ − y)vy + (z′ − z)vz }

1

c

∂r

∂x
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∂r

∂x
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c(x′ − x)

cr + rv cos(v, r )
.

More generally, if f be any function of the three quantitiesx′ − x, y′ − y, z′ − z
, and if f1, f2, f3 denote its derivates with respect to these three arguments respec-
tively, we easily find that

∂ f

∂x
= − f1 +
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cr + rv cos(v, r )
.

Similar equations hold for∂ f /∂y and ∂ f /∂z, while ∂ f /∂t is given by the
equation

∂ f

∂t
=
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.

Now define functionsF, G, Ψ by the equations
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,
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e
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where the summation is taken over all the electrons.Using the formulae just ob-
tained for the derivates of a function of the kindf, we find that
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Combining these results with the expressions already found for� , ax, ay, az, we
have
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∂y
= ax,
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Substituting these results for� , ax, ay, az in the equations of the type
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which give the components of the dielectric displacement and the magnetic force,
we find that� disappears automatically, and we obtain
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These equations show that the six components of the dielectric displacement
and the magnetic force can be expressed in terms of the derivates of two scalar
potentials F and G, defined by the equations

F(x, y, z, t) = Σ
e

4� sinh−1 z′ − z

{ ( x′ − x)2 + (y′ − y)2 } 1 / 2 ,

G(x, y, z, t) = Σ
e

4� tan−1 y′ − y

x′ − x
,

where the summation is taken over all the electrons in the field.
It can without difficulty be shown that, if any number of electrons whose total

charge is zero are moving in any manner so as to remain always in the vicinity of a
given point (i.e., to be in stationarymotion), then the electromagnetic field thus
generated is of the type given by

F =
1

r
f 

t −

r

c


, G = 0,

wherer is the distance from the point andf is an arbitrary function; or, more gen-
erally, of a field of this type superposed on fields of the same type, but related to
the axes ofy andx in the same way as this is related to the axis ofz. This is per-
haps of some interest in connection with the view advocated by some physicists
that the atoms of the chemical elements consist of sets of electrons, whose total
charge is zero, in stationary motion.
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1. Discussion of the Apparent Asymmetry of the preceding Result,
and its Vector Expression.

The formulae thus obtained are not symmetrical with respect tox, y, and z. In
order to discuss their relation to symmetrical formulae, we observe that they can
be written in the form of vector equations

d = curl curl f + curl
1

c
ġ , h = curl

1

c
ḟ − curl curl g ,

whered andh are the electric and magnetic vectors, andf andg are vectors direct-
ed parallel to the axis ofz, whose magnitudes areF and G respectively. These
vector equations are quite symmetrical, and our result is that, if, instead of regard-
ing the electromagnetic field as defined by the vectorsd andh, we reg ard it as de-
fined by vectorsf andg, connected withd andh by the above vector equations,
then f and g are simple functions of the coordinates of the electrons, whereasd
andh are complicated functions of their velocities and accelerations; and we have
also obtained the result that without loss of generality we can take f andg to be
ev erywhere, and at all times, parallel to some fixed direction in space (e.g., the ax-
is of z), a fact which makes it possible to specify them by two scalar quantities on-
ly.

It might be asked whether vectorsf andg exist which satisfy the above vector
equations and which are perfectly symmetrical—the answer to this is in the neg-
ative; in fact, although the equations are themselves invariantive, and can therefore
be expressed in the vector notation, yet they do not possess invariant solutions;
just as the vector equation

grad

1

r



= curl a

(wherer is the scalar distance from the origin anda is a vector to be determined)
possesses an infinite number of solutionsa, which can readily be found, but each
of which is specially related to some line in space, so that no solution is symmetri-
cal.

1. Deduction of the General Functional Form of an Electrodynamic
Disturbance in the AEther.

Having now shown that an electrodynamic field due to electrons is completely
characterized by two scalar potential functionsF andG, we can proceed to deduce
its general functional form.

The functionsF andG have singularities at those points which are actually oc-
cupied by electrons; at all other points we find by direct

2 B 2
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differentiation, or by substituting in the original electrodynamic equations the val-
ues of the components of dielectric displacement and magnetic force in terms ofF
andG, thatF andG satisfy the partial differential equations

∂2
F
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+

∂2
F

∂y2
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F

∂z2
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1
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F
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G
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1
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G

∂t2
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Writing down the general solution of these latter equations,* we obtain the re-
sult that the most general type of electrodynamic disturbance at a place in the
aether not occupied by an electron is that for which the components of the dielec-
tric displacement and magnetic force are represented by the equations
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where

F = ∫
�

0 ∫
2�

0
f (x sinucosv + y sinu sinv + zcosu + ct, u, v) du dv,

G = ∫
�

0 ∫
2�

0
g(x sinucosv + y sinu sinv + zcosu + ct, u, v) du dv,

and f and g are arbitrary functions of their arguments.

* Cf. a paper by the author inMath. Ann., Vol. LVII., pp. 333-355, 1903.


