17

The Laws of Induetion

17-1 The physics of induction

In the last chapter we described many phenomena which show that the effects
of inductton are quite complicated and interesting. Now we want to discuss the
fundamental principles which govern these effects. We have already defined the emf
in a conducting circuit as the total accumulated force on the charges throughout
the length of the loop. More specifically, it 1s the tangential component of the force
per unit charge, integrated along the wire once around the circuit. This quantity
is equal, therefore, to the total work done on a single charge that travels once
around the circuit.

We have also given the “flux rule,” which says that the emf is equal to the rate
at which the magnetic flux through such a conducting circuit is changing. Let’s
see if we can understand why that might be. First, we’ll consider a case in which
the flux changes because a circuit is moved 1n a steady field.

In Fig. 17-1 we show a simple loop of wire whose dimensions can be changed.
The loop has two parts, a fixed U-shaped part (a) and a movable crossbar (b)
that can shde along the two legs of the U. There is always a complete circuit, but
its area 1s variable. Suppose we now place the loop 1n a uniform magnetic field with
the plane of the U perpendicular to the field. According to the rule, when the cross-
bar is moved there should be in the loop an emf that 1s proportional to the rate of
change of the flux through the loop. This emf will cause a current in the loop.
We will assume that there is enough resistance in the wire that the currents are
small. Then we can neglect any magnetic field from this current.

The flux through the loop is wL B, so the “flux rule” would give for the emf—
which we write as §—

& = WBFLL = whBy,
dt

where v is the speed of translation of the crossbar.

Now we should be able to understand this result from the magnetic v X B
forces on the charges in the moving crossbar. These charges will feel a force,
tangential to the wire, equal to vB per unit charge. It is constant along the length
w of the crossbar and zero elsewhere, so the integral is

& = wiB,

which is the same result we got from the rate of change of the flux.

The argument just given can be extended to any case where there is a fixed
magnetic field and the wires are moved. One can prove, in general, that for any
circuit whose parts move in a fixed magnetic field the emf 1s the time derivative
of the flux, regardless of the shape of the circuit.

On the other hand, what happens if the loop 1s stationary and the magnetic
field is changed? We cannot deduce the answer to this question from the same
argument. It was Faraday’s discovery—from experiment—that the ““‘flux rule”
is still correct no matter why the flux changes. The force on electric charges is
given in complete generality by F = gq(E + v X B); there are no new special
“forces due to changing magnetic fields.” Any forces on charges at rest 1n a
stationary wire come from the E term. Faraday’s observations led to the discovery
that electric and magnetic fields are related by a new law: 1n a region where the
magnetic field is changing with time, electric fields are generated. It is this electric
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field which drives the electrons around the wire—and so is responsible for the emf
in a stationary circuit when there is a changing magnetic flux.

The general law for the electric field associated with a changing magnetic
field is

dB
= o — 7'
vV X E 57 17.1)
We will call this Faraday’s law. It was discovered by Faraday but was first written
in differential form by Maxwell, as one of his equations. Let’s see how this equation
gives the “flux rule” for circuits.
Using Stokes’ theorem, this law can be written in integral form as

ng‘ds=/ (Vv X E) nda = —/ 9B . da, (17.2)
T S Sat

where, as usual, T' is any closed curve and S is any surface bounded by it. Here,
remember, ' is a mathematical curve fixed 1n space, and S'is a fixed surface. Then
the time derivative can be taken outside the integral and we have

0
yé;E ds = -3 SB nda
- —5‘2 (flux through ). (17.3)

Applying this relation to a curve T' that follows a fixed circuit of conductor, we
get the “flux rule” once again. The integral on the left is the emf, and that on the
right 1s the negative rate of change of the flux linked by the circuit. So Eq. (17.1)
applied to a fixed circuit 1s equivalent to the “flux rule.”

So the “flux rule”—that the emf in a circuit is equal to the rate of change of
the magnetic flux through the circuuit—applies whether the flux changes because the
field changes or because the circuit moves (or both). The two possibilities—
“circuit moves” or “field changes”’—are not distinguished 1n the statement of the
rule. Yet 1n our explanation of the rule we have used two completely distinct laws
for the two cases—v X B for “circuit moves” and v X E = —0dB/at for “field
changes.”

We know of no other place in physics where such a simple and accurate
general principle requires for its real understanding an analysis 1in terms of fwo
different phenomena. Usually such a beautiful generalization is found to stem from
a single deep underlying principle. Nevertheless, in this case there does not appear
to be any such profound implication. We have to understand the “rule” as the
combined effects of two quite separate phenomena.

We must look at the “flux rule” in the following way. In general, the force per
unit charge is F/g = E + v X B. In moving wires there 1s the force from the
second term. Also, there is an E-field 1f there 1s somewhere a changing magnetic
field. They are independent effects, but the emf around the loop of wire is always
equal to the rate of change of magnetic flux through 1t.

17-2 Exceptions to the ‘‘flux rule’’

We will now give some examples, due in part to Faraday, which show the
importance of keeping clearly in mind the distinction between the two effects re-
sponsible for induced emf’s. Our examples involve situations to which the “flux
rule” cannot be applied—either because there is no wire at all or because the path
taken by induced currents moves about within an extended volume of a conductor.

We begin by making an important point: The part of the emf that comes from
the E-field does not depend on the existence of a physical wire (as does the v X B
part). The E-field can exist in free space, and 1ts line integral around any imaginary
line fixed in space is the rate of change of the flux of B through that line. (Note
that this is quite unlike the E-field produced by static charges, for in that case the
line integral of E around a closed loop is always zero.)
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Now we will describe a situation 1n which the flux through a circuit does not
change, but there 1s nevertheless an emf. Figure 17-2 shows a conducting disc
which can be rotated on a fixed axis in the presence of a magnetic field. One
contact is made to the shaft and another rubs on the outer periphery of the disc.
A circuit 1s completed through a galvanometer. As the disc rotates, the “circuit,”
in the sense of the place 1n space where the currents are, 1s always the same. But
the part of the “circuit” in the disc 1s in material which is moving. Although the
flux through the “circuit” 1s constant, there 1s still an emf, as can be observed by
the deflection of the galvanometer. Clearly, here is a case where the v X B force in
the moving disc gives rise to an emf which cannot be equated to a change of flux.

Now we consider. as an opposite example, a somewhat unusual situation 1n
which the flux through a “circuit” (again in the sense of the place where the current
15) changes but where there 1s no emf. Imagine two metal plates with slightly curved
edges, as shown 1 Fig. 17-3, placed in a uniform magnetic field perpendicular to
their surfaces. Each plate 1s connected to one of the terminals of a galvanometer,
as shown. The plates make contact at one point P, so there is a complete circurt
If the plates are now rocked through a small angle, the point of contact will move
to P’. If we imagine the “circuit™ to be completed through the plates on the dotted
line shown in the figure, the magnetic flux through this circuit changes by a large
amount as the plates are rocked back and forth. Yet the rocking can be done with
small motions, so that v X B s very small and there is practically no emf. The
“flux rule” does not work 1n this case. It must be applied fo circuits in which the
material of the circuit remans the same. When the material of the circuit 1s chang-
ng, we must return to the basic laws. The correct physics is always given by the
two basic laws

F = g(E + v X B),

J
VXE= -5

17-3 Particle acceleration by an induced electric field; the betatron

We have said that the electromotive force generated by a changing magnetic
field can exist even without conductors; that 1s, there can be magnetic induction
without wires. We may still imagine an electromotive force around an arbitrary
mathematical curve m space. It is defined as the tangential component of E
integrated around the curve. Faraday’s law says that this line integral 1s equal to
the rate of change of the magnetic flux through the closed curve, Eq. (17.3).

As an example of the effect of such an induced electric field, we want now to
consider the motion of an electron in a changing magnetic field. We imagine a
magnetic field which, everywhere on a plane, points tn a vertical direction, as shown
in Fig. 17-4. The magnetic field 1s produced by an electromagnet, but we will not
worry about the details For our example we will imagine that the magnetic field
is symmetric about some axis, 1 €., that the strength of the magnetic field will
depend only on the distance from the axis. The magnetic field 1s also varying with
ume We now imagine an electron that 1s moving in this field on a path that 1s a
circle of constant radius with its center at the axis of the field. (We will see later
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Fig. 17-4. An electron accelerating in an axially
symmetric, time-varying magnetic field.

how this motion can be arranged.) Because of the changing magnetic field, there
will be an electric field E tangential to the electron’s orbit which will drive it around
the circle. Because of the symmetry, this electric field will have the same value
everywhere on the circle. If the electron’s orbit has the radius », the line integral
of E around the orbit 1s equal to the rate of change of the magnetic flux through
the circle. The line integral of E is just its magnitude times the circumference of
the circle, 27r. The magnetic flux must, 1n general, be obtained from an integral.
For the moment, we let B,, represent the average magnetic field in the interior of
the circle; then the flux is this average magnetic field times the area of the circle.
We will have
2mrE = :% (B, * wr?).

Since we are assuming r 1s constant, E1s proportional to the time derivative of

the average field:

E = rdB,,

5 (17.4)

The electron will feel the electric force gE and will be accelerated by it. Remember-
ing that the relativistically correct equation of motion is that the rate of change of
the momentum 1s proportional to the force, we have

d
gE = ZJ%' (17.5)
For the circular orbit we have assumed, the electric force on the electron is
always 1n the direction of its motion, so its total momentum will be increasing at
the rate given by Eq. (17.5). Combiming Eqgs. (17.5) and (17.4), we may relate the
rate of change of momentum to the change of the average magnetic field:

dp _ qr dB.,

= 17 7.
d = 7 dr (17.6)
Integrating with respect to 7, we find for the electron’s momentum
p = po+ % aB., (17.7)

where pg is the momentum with which the electrons start out, and AB,, is the sub-
sequent change in B,,. The operation of a betatron—a machine for accelerating
electrons to high energies—is based on this 1dea.

To see how the betatron operates in detail, we must now examine how the
electron can be constrained to move on a circle. We have discussed in Chapter 11
of Vol. I the principle involved. If we arrange that there 1s a magnetic field B at
the orbit of the electron, there will be a transverse force gv X B which, for a suit-
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ably chosen B, can cause the electron to keep moving on 1ts assumed orbit. In the
betatron this transverse force causes the electron to move in a circular orbit of
constant radius. We can find out what the magnetic field at the orbit must be by
using again the relativistic equation of motion, but this time, for the transverse
component of the force. In the betatron (see Fig 17-4), B1s at right angles to v, so
the transverse force is g B. Thus the force 1s equal to the rate of change of the trans-
verse component p, of the momentum:

guB = ag;” . (17.8)
When a particle is moving in a circle, the rate of change of its transverse momentum
is equal to the magnitude of the total momentum times w, the angular velocity of
rotation (following the arguments of Chapter 11, Vol. I):

dp[ _
4 = ep (17.9)
where, since the motion 1s circular,
w = g (17.10)

Setting the magnetic force equal to the transverse acceleration, we have
v
qVBorbis = P P (17.11)

where B, is the field at the radius r.

As the betatron operates, the momentum of the electron grows in proportion
to B,,, according to Eq. (17.7), and if the electron is to continue to move 1n 1ts
proper circle, Eq. (17.11) must continue to hold as the momentum of the electron
increases. The value of B, must increase 1n proportion to the momentum p.
Comparing Eq. (17.11) with Eq. (17.7), which determines p, we see that the follow-
g relation must hold between B... the average magnetic field wside the orbit
at the radius r, and the magnetic field By, at the orbit:

AB,, = 2 ABom. (1712)

The correct operation of a betatron requires that the average magnetic field inside
the orbit increase at twice the rate of the magnetic field at the orbit itself. In these
circumstances, as the energy of the particle 1s increased by the induced electric
field the magnetic field at the orbit increases at just the rate required to keep the
particle moving 1n a circle.

The betatron 1s used to accelerate electrons to energies of tens of millions of
volts, or even to hundreds of millions of volts. However, it becomes impractical for
the acceleration of electrons to energies much higher than a few hundred million
volts for several reasons. One of them 1s the practical difficulty of attaining the
required high average value for the magnetic field inside the orbit. Another 1s that
Eq. (17.6) 1s no longer correct at very high energies because it does not include the
loss of energy from the particle due to its radiation of electromagnetic energy
(the so-called synchrotron radiation discussed in Chapter 36, Vol. I). For these
reasons, the acceleration of electrons to the highest energies—to many billions of
electron volts—is accomplished by means of a different kind of machine, called a
synchrotron.

17-4 A paradox

We would now like to describe for you an apparent paradox. A paradox is a
situation which gives one answer when analyzed one way, and a different answer
when analyzed another way, so that we are left in somewhat of a quandary as to
actually what should happen. Of course, in physics there are never any real para-
doxes because there is only one correct answer; at least we behieve that nature will
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act in only one way (and that 1s the right way, naturally). So in physics a paradox
1s only a confusion in our own understanding. Here is our paradox.

Imagine that we construct a device like that shown in Fig. 17-5. There 1s a
thin, circular plastic disc supported on a concentric shaft with excellent bearings,
so that it 1s quite free to rotate. On the disc 1s a cotl of wire in the form of a short
solenoid concentric with the axis of rotation. This solenoid carries a steady current
I provided by a small battery, also mounted on the disc. Near the edge of the disc
and spaced uniformly around 1ts circumference are a number of small metal spheres
mnsulated from each other and from the solenoid by the plastic material of the disc.
Each of these small conducting spheres is charged with the same electrostatic
charge Q. Everything is quite stationary, and the disc is at rest. Suppose now that
by some accident—or by prearrangement—the current n the solenoid 1s inter-
rupted, without, however, any intervention from the outside. So long as the current
continued, there was a magnetic flux through the solenoid more or less parallel
to the axis of the disc. When the current is interrupted, this flux must go to zero.
There will, therefore, be an electric field induced which will circulate around in
circles centered at the axis. The charged spheres on the perimeter of the disc will
all experience an electric field tangenual to the perimeter of the disc. This electric
force 1s 1n the same sense for all the charges and so will result in a net torque on the
disc. From these arguments we would expect that as the current in the solenoid
disappears, the disc would begin to rotate. If we knew the moment of inertia of
the disc, the current n the solenoid, and the charges on the small spheres, we could
compute the resulting angular velocity.

But we could also make a different argument. Using the principle of the con-
servation of angular momentum, we could say that the angular momentum of the
disc with all 1ts equipment is initially zero, and so the angular momentum of the
assembly should remain zero. There should be no rotauon when the current 1s
stopped. Which argument 1s correct? Will the disc rotate or will it not? We will
leave this question for you to think about.

We should warn you that the correct answer does not depend on any non-
essential feature, such as the asymmetric position of a battery, for example. In
fact, you can imagine an 1deal situation such as the following: The solenoid 1s
made of superconducting wire through which there is a current. After the disc has
been carefully placed at rest, the temperature of the solenoid 1s allowed to rise slowly
When the temperature of the wire reaches the transition temperature between
superconductivity and normal conductivity, the current in the solenoid will be
brought to zero by the resistance of the wire. The flux will, as before, fall to zero,
and there will be an electric field around the axis. We should also warn you that the
solution 1s not easy, nor 1s 1t a trick. When you figure it out, you will have dis-
covered an important principle of electromagnetism.

17-5 Alternating-current generator

In the remainder of this chapter we apply the principles of Section 17-1 to
analyze a number of the phenomena discussed in Chapter 16. We first look 1n more
detail at the alternating-current generator. Such a generator consists basically of a
coil of wire rotating in a uniform magnetic field. The same result can also be
achieved by a fixed coil in a magnetic field whose direction rotates in the manner
described in the last chapter. We will consider only the former case. Suppose we
have a circular coil of wire which can be turned on an axis along one of 1ts diam-
eters. Let this coil be located 1n a uniform magnetic field perpendicular to the axis
of rotation, as in Fig. 17-6 We also imagine that the two ends of the coil are
brought to external connecttons through some kind of sliding contacts.

Due to the rotation of the coil, the magnetic flux through it will be changing.
The circuit of the coil will therefore have an emf in1t. Let S be the area of the coil
and # the angle between the magnetic field and the normal to the plane of the co1l.*

for a Surface area.
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The flux through the coil is then
BS cos 8. (17.13)

If the coil is rotating at the uniform angular velocity w, 6 varies with time as
6 = wt. The emf & in the coil is then

d d
&E= — Zi_t (ﬂux) = — Et (BSCOS wt),
or
& = BSwsin wt. (17.14)

If we bring the wires from the generator to a point some distance from the
rotating coil, where the magnetic field is zero, or at least 1s not varying with time,
the curl of E in this region will be zero and we can define an electric potential.
In fact, if there is no current being drawn from the generator, the potential differ-
ence V between the two wires will be equal to the emf in the rotating coil. That is,

V = BSwsin wt = ¥V sin wt.

The potential difference between the wires varies as sin wt. Such a varying potential
difference 1s called an alternating voltage.

Since there is an electric field between the wires, they must be electrically
charged. It 1s clear that the emf of the generator has pushed some excess charges
out to the wire until the electric field from them is strong enough to exactly counter-
balance the induction force. Seen from outside the generator, the two wires appear
as though they had been electrostatically charged to the potential difference V,
and as though the charge was being changed with time to give an alternating po-
tential difference. There is also another difference from an electrostatic situation.
If we connect the generator to an external circuit that permits passage of a current,
we find that the emf does not permit the wires to be discharged but continues to
provide charge to the wires as current is drawn from them, attempting to keep the
wires always at the same potential difference. If, in fact, the generator is connected
in a circuit whose total resistance is R, the current through the circuit will be pro-
portional to the emf of the generator and inversely proportional to R. Since the
emf has a sinusoidal time variation, so also does the current. There is an alternating
current

I = -1% = —I% sin wt.
The schematic diagram of such a circuit is shown in Fig. 17-7.

We can also see that the emf determines how much energy is supplied by the
generator. Each charge in the wire is receiving energy at the rate F - v, where F 1s
the force on the charge and v s its velocity. Now let the number of moving charges
per umt length of the wire be n; then the power being delivered nto any element
ds of the wire is

F-vnds.

For a wire, v is always along ds, so we can rewrite the power as
moF - ds.

The total power being delivered to the complete circuit is the integral of this
expression around the complete loop:

Power — f]gnvF ds. (17.15)

Now remember that gnv 1s the current 7, and that the emf is defined as the integral
of F/q around the circuit. We get the result

Power from a generator = &I. (17.16)
17-7
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When there is a current in the coil of the generator, there will also be mechani-
cal forces on 1t. In fact, we know that the torque on the coil 1s proportional to its
magnetic moment, to the magnetic field strength B, and to the sine of the angle
between. The magnetic moment 1s the current n the coil times its area. Therefore
the torque is

7 = ISBsin 6. (17.17)

The rate at which mechanical work must be done to keep the coil rotating 1s the
angular velocity « times the torque:

Eld%/ = wr = wlISBsin 4. (17.18)
Comparing this equation with Eq. (17.14), we see that the rate of mechanical work
required to rotate the coil against the magnetic forces 1s just equal to &1, the rate
at which electrical energy is delivered by the emf of the generator. All of the me-
chanical energy used up in the generator appears as electrical energy in the circuit.

As another example of the currents and forces due to an induced emf, let’s
analyze what happens 1n the setup described in Section 12, and shown in Fig. 17-1.
There are two parallel wires and a sliding crossbar located in a uniform magnetic
field perpendicular to the plane of the parallel wires. Now let’s assume that the
“bottom™ of the U (the left side 1n the figure) 1s made of wires of high resistance,
while the two side wires are made of a good conductor like copper—then we don’t
need to worry about the change of the circuit resistance as the crossbar 1s moved.
As before, the emf in the circuit is

& = vBw. (17.19)

The current in the circuit 1s proportional to this emf and inversely proportional
to the resistance of the circuit:
j= & _ By

R R (17.20)

Because of this current there will be a magnetic force on the crossbar that 1s
proportional to its length, to the current 1n it, and to the magnetic field, such that

F = Blw. (17.21)
Taking I from Eq. (17.20), we have for the force

B BZW2

F==%

2. (17.22)

We see that the force is proportional to the velocity of the crossbar. The direction
of the force, as you can easily see, 13 opposite to its velocity. Such a “velocity-
proportional” force, which 1s like the force of viscosity, is found whenever induced
currents are produced by moving conductors 1n a magnetic field. The examples of
eddy currents we gave in the last chapter also produced forces on the conductors
proportional to the velocity -of the conductor, even though such situations, in
general, give a complicated distribution of currents which 1s difficult to analyze.
It 1s often convenient in the design of mechanical systems to have damping
forces which are proportional to the velocity. Eddy-current forces provide one of
the most convenient ways of getting such a velocity-dependent force. An example
of the application of such a force is found 1n the conventional domestic wattmeter.
In the wattmeter there 1s a thin aluminum disc that rotates between the poles of a
permanent magnet. This disc is driven by a small electric motor whose torque is
proportional to the power being consumed 1n the electrical circuit of the house.
Because of the eddy-current forces in the disc, there is a resistive force proportional
to the velocity. In equilibrium, the velocity 1s therefore proportional to the rate of
consumption of electrical energy. By means of a counter attached to the rotating
disc, a record is kept of the number of revolutions 1t makes. This count is an 1ndi-
cation of the total energy consumption, 1.e., the number of watthours used.
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We may also point out that Eq. (17.22) shows that the force from induced
currents—that is, any eddy-current force—is inversely proportional to the re-
sistance. The force will be larger, the better the conductivity of the material. The
reason, of course, is that an emf produces more current 1if the resistance is low, and
the stronger currents represent greater mechanical forces.

We can also see from our formulas how mechanical energy is converted into
electrical energy. As before, the electrical energy supplied to the resistance of the
circuit is the product 1. The rate at which work is done in moving the conducting
crossbar is the force on the bar times its velocity. Using Eq. (17.21) for the force,
the rate of doing work is

AW _ VB
d ~ R

We see that this is indeed equal to the product &7 we would get from Eqgs. (17.19)
and (17.20). Agam the mechanical work appears as electrical energy.

17-6 Mutual inductance

We now want to consider a situation in which there are fixed coils of wire but
changing magnetic fields. When we described the production of magnetic fields by
currents, we considered only the case of steady currents. But so long as the currents
are changed slowly, the magnetic field will at each instant be nearly the same as the
magnetic field of a steady current. We will assume in the discussion of this section
that the currents are always varying sufficiently slowly that this is true.

In Fig. 17-8 is shown an arrangement of two coils which demonstrates the
basic effects responsible for the operation of a transformer. Coil 1 consists of a
conducting wire wound in the form of a long solenoid. Around this coil—and
insulated from it—is wound coil 2, consisting of a few turns of wire. If now a
current is passed through coil I, we know that a magnetic field will appear inside it.
This magnetic field also passes through coil 2. As the current in coil 1 1s varied,
the magnetic flux will also vary, and there will be an induced emf in coil 2. We will
now calculate this induced emf.

We have seen in Section 13-5 that the magnetic field inside a long solenowd is
uniform and has the magnitude

L mb

B = €ocZ2 |

, (17.23)

where N, is the number of turns in coil 1, 7, is the current through 1t, and / is its
length. Let’s say that the cross-sectional area of coil 1 is S; then the flux of B is
its magnitude times S. If coil 2 has N, turns, this flux links the coil N, times.
Therefore the emf in coil 2 is given by

dB
&y = — NsS T (17.24)
The only quantity in Eq. (17.23) which varies with time is /;. The emf is therefore
given by
_ NuNaS dly

&2 = epc?l dt

(17.25)

We see that the emf in coil 2 is proportional to the rate of change of the current
in coil 1. The constant of proportionality, which is basically a geometric factor of
the two coils, is called the mutual inductance, and is usually designated 91 ;,. Equa-
tion (17.25) 1s then written

dil
8o = Mgy 7171 (17.26)

Suppose now that we were to pass a current through coil 2 and ask about
the emf in coil 1. We would compute the magnetic field, which is everywhere
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proportional to the current /5. The flux linkage through coil 1 would depend on
the geometry, but would be proportional to the current ;. The emf in coil 1
would, therefore, again be proportional to dl,/dt: We can write

di
&, = Mys 712- (17.27)

The computation of 9,5 would be more difficult than the computation we have
just done for 9My,. We will not carry through that computation now, because we
will show later in this chapter that 917, » is necessarily equal to 9Mg;.

Since for any coil its field is proportional to its current, the same kind of
result would be obtained for any two coils of wire. The equations (17.26) and
(17.27) would have the same form; only the constants 9, and 9M;, would be
different. Their values would depend on the shapes of the coils and their relative
positions.

St

Fig. 17-9. Any two coils have a J
mutual inductance I proportional to the
integral of ds; « dsy/ry,.

Suppose that we wish to find the mutual inductance between any two arbitrary
coils—for example, those shown 1n Fig. 17-9. We know that the general expression
for the emf in coil 1 can be written as

d
& = _Zit (1)B nda,

where B 1s the magnetic field and the integral is to be taken over a surface bounded
by circuit 1. We have seen in Section 14-1 that such a surface integral of B can be
related to a line integral of the vector potential. In particular,

/ B nda =% A - dsq,
J(D (D

where A represents the vector potential and ds, is an element of circuit 1. The line
integral is to be taken around circuit 1. The emf in coil 1 can therefore be written as

d
81 = —jt %DA dsl. (17.28)

Now let’s assume that the vector potential at circuit 1 comes from currents
in circuit 2. Then it can be written as a line integral around circuit 2:

1 7{ Ldsy (17.29)
(2)

47egc? rie

where I, is the current in circuit 2, and ry, is the distance from the element of the
circuit ds, to the point on circuit 1 at which we are evaluating the vector potential.
(See Fig. 17-9.) Combining Egs. (17.28) and (17.29), we can express the emf in
circuit 1 as a double line integral:

_ 1 d I, ds,
&1 = dreqc? di f(l) _%(2) 12 ds1.

In this equation the integrals are all taken with respect to stationary circuits. The
only variable quantity is the current I,, which does not depend on the variables of
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integration. We may therefore take it out of the integrals. The emf can then
be written as

dl,

dt

&1 = Mye

where the coefficient 9174 is

. _ 1 dSz N dSl
Myg = Treac? ){1) ﬁ’z) s (17.30)

We see from this integral that 9, , depends only on the circuit geometry. It depends
on a kind of average separation of the two circuits, with the average weighted most
for parallel segments of the two coils. Our equation can be used for calculating
the mutual inductance of any two circuits of arbitrary shape. Also, it shows that
the integral for 91, is 1dentical to the integral for 91 45,. We have therefore shown
that the two coefficients are identical. For a system with only two couls, the co-
efficients 917, », and N, are often represented by the symbol 91 without subscripts,
called simply the mutual inductance:

mlz = STZ21 = IN.

17-7 Self-inductance

In discussing the induced electromotive forces in the two coils of Figs. 17-8
or 17-9, we have considered only the case in which there was a current in one coil
or the other. If there are currents in the two coils simuitaneously, the magnetic
flux linking either coil will be the sum of the two fluxes which would exist separately,
because the law of superposition applies for magnetic fields. The emf in erther
coil will therefore be proportional not only to the change of the current in the
other coil, but also to the change in the current of the coil itself. Thus the total
emf in coil 2 should be written*

dl di
& = E7]"5217;"1‘571227;'

(17.31)
Similarly, the emf in coil 1 will depend not only on the changing current 1 coil 2,
but also on the changing current in 1tself:

dl,

& = 3“12714‘ Ny

dI,
=% (17.32)

The coefficients M5 and 9, are always negative numbers. It is usual to write
My = —Ly, Moy = —Lo, (17.33)

where £, and £, are called the self-inductances of the two coils.

The self-induced emf will, of course, exist even if we have only one coil.
Any coil by itself will have a self-inductance £. The emf will be proportional to the
rate of change of the current in 1it. For a single coil, it is usual to adopt the con-
vention that the emf and the current are considered positive if they are in the same
direction. With this convention, we may write for the emf of a single coil

dil

&= —£ T (17.34)

The negative sign indicates that the emf opposes the change in current—it is often
called a “back emf.”

Since any coil has a self-inductance which opposes the change in current, the
current in the coil has a kind of inertia. In fact, if we wish to change the current in

* The sign of 91T, 2 and M2 in Egs. (17.31) and (17.32) depends on the arbitrary choices
for the sense of a positive current in the two coils.
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{a)

Fig. 17-10 (a) A circuvit with a
voltage source and an inductance. (b) An
analogous mechanical system.

a coil we must overcome this inertia by connecting the coil to some external voltage
source such as a battery or a generator, as shown in the schematic diagram of Fig.
17-10(a). In such a circuit, the current I depends on the voltage U according to

the relation
V=48 ar. (17.35)
d
This equation has the same form as Newton’s law of motion for a particle in
one dimension. We can therefore study it by the principle that “the same equations
have the same solutions.” Thus, 1f we make the externally applied voltage U corre-
spond to an externally applied force F, and the current [ in a coil correspond to the
velocity v of a particle, the inductance £ of the coil corresponds to the mass m of the
particle.* See Fig. 17-10(b). We can make the following table of corresponding
quantities.

Particle Coil

F (force) U (potential difference)

v (velocity) I (current)

x (displacement) g (charge)

F dv di
- V=L
my (momentum) &I
imv? (kinetic energy) 1eI? (magnetic energy)

17-8 Inductance and magnetic energy

Continuing with the analogy of the preceding section, we would expect that
corresponding to the mechanical momentum p = mvp, whose rate of change is
the applied force, there should be an analogous quantity equal to £1, whose rate of
change is V. We have no right, of course, to say that £71s the real momentum of the
circuit; in fact, it isn’t. The whole circuit may be standing still and have no mo-
mentum. It is only that £/is analogous to the momentum muv 1n the sense of satisfy-
ing corresponding equations. In the same way, to the kinetic energy 3mv?, there
corresponds an analogous quantity ££/%. But there we have a surprise. This
1217 is really the energy 1n the electrical case also. This 1s because the rate of doing
work on the inductance 1s U/, and in the mechanical system it 1s Fu, the corre-
sponding quantity. Therefore, in the case of the energy, the quantities not only
correspond mathematically, but also have the same physical meaning as well.

We may see this in more detail as follows. As we found in Eq. (17.16), the
rate of electrical work by induced forces is the product of the electromotive force
and the current:

dw
- = gl

Replacing & by its expression in terms of the current from Eq. (17.34), we have

aw dil

avw _ _ o ¥, 7.

7 £l J (17.36)
Integrating this equation, we find that the energy required from an external source
to overcome the emf in the self-inductance while building up the currentt (which
must equal the energy stored, U) is

—W = U = el (17.37)

Therefore the energy stored in an inductance is 3072,

* This is, incidentally, not the only way a correspondence can be set up between me-
chanical and electrical quantities.

t We are neglecting any energy loss to heat from the current in the resistance of the coul.
Such losses require additional energy from the source but do not change the energy which
goes 1nto the inductance.
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Applying the same arguments to a pair of coils such as those in Figs. 17-8 or
17-9, we can show that the total electrical energy of the system 1s given by

For, starting with I = 0 in both coils, we could first turn on the current /; in
coil 1, with I, = 0. The work done 1s just 2£,/3. But now, on turning up /s,
we not only do the work 42,12 against the emf in circuit 2, but also an additional
amount M /;/,, which is the integral of the emf [W(dl,/dr)] in circuit 1 times the
now constant current I in that circuit.

Suppose we now wish to find the force between any two coils carrying the
currents /; and /,. We might at first expect that we could use the priciple of
virtual work, by taking the change in the energy of Eq. (17.38). We must remember,
of course, that as we change the relative positions of the coils the only quantity
which varies 1s the mutual inductance 9. We might then write the equation of
virtual work as

—FAx = AU = I{I, A9 (wrong).

But this equation is wrong because, as we have seen earlier, 1t includes only the
change in the energy of the two coils and not the change in the energy of the sources
which are maintaining the currents 7, and I at their constant values. We can now
understand that these sources must supply energy against the induced emf’s in the
coils as they are moved. If we wish to apply the principle of virtual work correctly,
we must also include these energies. As we have seen, however, we may take a
short cut and use the principle of virtual work by remembering that the total
energy is the negative of what we have called U, ., the “mechanical energy.” We
can therefore write for the force

—FAx = AUmoch = —AU. (1739)
The force between two coils 1s then given by
Fax = 1112 A,

Equation (17.38) for the energy of a system of two coils can be used to show
that an interesting inequality exists between mutual inductance 9 and the self-
inductances £, and £, of the two coils. It is clear that the energy of two coils
must be positive. If we begin with zero currents in the coils and increase these
currents to some values, we have been adding energy to the system. If not, the
currents would spontanepusly increase with release of energy to the rest of the
world—an unlikely thing to happen! Now our energy equation, Eq. (17.38), can
equally well be written in the following form:

1 m o\ 1 m?\ .
That 1s just an algebraic transformation. This quantity must always be positive
for any values of 7, and I,. In particular, it must be positive if 75 should happen to
have the special value

L
I, = —ﬁl I (17.41)

But with this current for I,, the first term 1n Eq. (17.40) 1s zero. If the energy is to
be positive, the last term in (17.40) must be greater than zero. We have the require-
ment that

£1L, > M2

We have thus proved the general result that the magnitude of the mutual inductance
9 of any two coils 1s necessarily less than or equal to the geometric mean of the
two self-inductances. (9 itself may be positive or negative, depending on the sign

17-13



conventions for the currents /7, and I,.)
M| < vV £1L5. (17.42)
The relation between 91T and the self-inductances is usually written as
M = kv €L, (17.43)

The constant k is called the coefficient of coupling. If most of the flux from one
coil links the other coil, the coefficient of coupling is near one; we say the coils are
“tightly coupled.” If the coils are far apart or otherwise arranged so that there is
very little mutual flux linkage, the coefficient of coupling is near zero and the
mutual inductance is very small.

For calculating the mutual inductance of two coils, we have given in Eq.
(17.30) a formula which 1s a double line integral around the two circuits. We
mught think that the same formula could be used to get the self-inductance of a
single coil by carrying out both line integrals around the same coil. This, however,
will not work, because in integrating around the two coils, the denominator r; 5 of
the integrand will go to zero when the two line elements are at the same point.
The self-inductance obtained from this formula is infinite. The reason 1s that this
formula is an approximation that i1s valid only when the cross sections of the wires
of the two circuits are small compared with the distance from one circuit to the
other. Clearly, this approximation doesn’t hold for a single coil. It is, in fact, true
that the inductance of a single coil tends logarithmically to infimity as the diameter
of its wire is made smaller and smaller.

We must, then, look for a different way of calculating the self-inductance of a
single coil. It is necessary to take into account the distribution of the currents
within the wires because the size of the wire is an important parameter. We should
therefore ask not what is the inductance of a ““circuit,” but what is the inductance
of a distribution of conductors. Perhaps the easiest way to find this inductance is
to make use of the magnetic energy. We found earlier, in Section 15-3, an ex-
pression for the magnetic energy of a distribution of stationary currents:

U= %/j~A av. (17.44)

If we know the distribution of current density j, we can compute the vector po-
tential 4 and then evaluate the integral of Eq. (17.44) to get the energy. This
energy is equal to the magnetic energy of the self-inductance, $£/%. Equating
the two gives us a formula for the inductance:

g =g [i-dav. (17.45)
We expect, of course, that the inductance is a number depending only on the
geometry of the circuit and not on the current 7 1n the circuit. The formula of Eq.
(17.45) will indeed give such a result, because the integral in this equation is pro-
portional to the square of the current—the current appears once through j and
again through the vector potential 4. The integral divided by IZ will depend on the
geometry of the circuit but not on the current 7.

Equation (17.44) for the energy of a current distribution can be put in a quite
different form which is sometimes more convenient for calculation. Also, as we
will see later, it is a form that is important because it is more generally valid. In
the energy equation, Eq. (17.44), both A4 and j can be related to B, so we can hope
to express the energy in terms of the magnetic field—just as we were able to relate
the electrostatic energy to the electric field. We begin by replacing j by €,c?v X B.
We cannot replace A4 so easily, since B = V X A4 cannot be reversed to give 4 in
terms of B. Anyway, we can write
€oc”

U= T/(V X B)-AdV. (17.46)
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The interesting thing is that—with some restrictions—this integral can be
written as

2
€pC

5 /B‘ (V X A)dV. (17.47)

U=
To see this, we write out in detail a typical term. Suppose that we take the term
(Vv X B).A. which occurs in the integral of Eq. (17.46). Writing out the com-

ponents, we get
aB, 9B,
/<ax ay)AzdxdyaVz.

(There are, of course, two more integrals of the same kind.) We now integrate the
first term with respect to x—integrating by parts. That is, we can say

3B, B / 394,
/3}‘ Azdx = ByAz — By'g dx.

Now suppose that our system—meaning the sources and fields—is finite, so that
as we go to large distances all fields go to zero. Then if the integrals are carried out
over all space, evaluating the term B,A, at the limits will give zero. We have left
only the term with B,(dA4,/dx), which is evidently one part of B,(V X A), and,
therefore, of B+ (Vv X A). If you work out the other five terms, you will see that
Eq. (17.47) is indeed equivalent to Eq. (17.46).

But now we can replace (V X A) by B, to get

EQC2

U=2

B-BdV. (17.48)
We have expressed the energy of a magnetostatic situation in terms of the magnetic
field only. The expression corresponds closely to the formula we found for the
electrostatic energy:

U=3|E-Edv. (17.49)

One reason for emphasizing these two energy formulas is that sometimes they
are more convenient to use. More important, it turns out that for dynamic fields
(when E and B are changing with time) the two expressions (17.48) and (17.49)
remaim true, whereas the other formulas we have given for electric or magnetic
energies are no longer correct—they hold only for static fields.

If we know the magnetic field B of a single coil, we can find the self-inductance
by equating the energy expression (17.48) to £/ Let’s see how this works by
finding the self-inductance of a long solenoid. We have seen earlier that the mag-
netic field inside a solenoid is uniform and B outside is zero. The magnitude of the
field inside is B = nl/eyc?, where n is the number of turns per umit length in the
winding and I is the current. If the radius of the coil is r and its length 1s L (we
take L very long, so that we can neglect end effects, i.e., L >> r), the volume inside
is mr2L. The magnetic energy is therefore

2 272
_ €gC” o _nT 2
=3 B*-(Vol) = Tegc? wreL,
which is equal to 3£7%. Or,
2. 2
e=2"y (17.50)
€pc
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