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Quantization of the electromagnetic field laws of classical electrodynamics 

appear in the form of 

                                                    Eq. (1a) 

                                       Eq. (1b) 

where     are components of field, E and H. There is a (Lagrangian) derivation 

     ⁄                                                     Eq. (2) 

It's more clearly understood to work with potentials    defined by 

                                                        Eq. (3) 

Note:  The Greek subscript symbols run 1 to 4 for vectors or operators taking 

the value 0, 1, 2, 3, and the Latin indices run from 1 to 3 in the coordinates.  

Also  

  (     )  (              )   

  (     )  (              )  

  The same holds for           (      )    it and the units are 

         which satisfies the equation of motion 

   ( )        ( )                                  Eq. (4) 



From Equation (3) A is determined up to a gradient of a scalar function  ( ) 

i.e.   
           (gauge transformation). The fields     and Equation (4) 

remain invariant. 

Simplifying Equation (4) by introducing a (Lorentz) condition on the potentials, 

                                                        Eq. (6) 

reduces Equation (4) to 

                                                     Eq. (7) 

which together with Equation (6) is equivalent to Maxwell's equations. 

However, condition (7) still does not determine uniquely     , but now 

the gauge transformation restricts the class of function   to solutions of the 

equation 

                                                     Eq. (8) 

on account of photon mass = 0 the fields     and not the potentials    have a 

direct physical meaning this however is not the case if      . 

The canonical (momenta) variables   ( ) corresponding to Equation (3) 

are 

           ( )                                          Eq. (9) 

 

Thus      so Equation (9) cannot be solved by    . Now it is evident 

Equation (2) is invalid. How do we then validate the quantization of free (so-

called Maxwellian) fields? 

Solution: 

The Lagrangian Equation (3) i s replaced by 

      ⁄         
 
 ⁄            

 
 ⁄              Eq . (10) 

from which the canonical momenta are given by 



  ( )      ( )                                  Eq. (11a) 

and 

  ( )       ( )                                Eq. (11 b) 

and hence instead of Equation (8), we obtain the weaker condition 

     ( )                                        Eq. (12) 

which follows from Equation (4). 

The invalidity occurs when one takes the general solution of the 

equation only those which satisfy the initial conditions when      . 

    ( )         ( )    for all values of   then from Equation (12) 

it follows that      ( ) vanishes for all t. This is in agreement with the 

formulation of the theory of electromagnetism. 

The above is stated to avoid the expressions describing a conceptual 

fallacy leading to an enormous number of invalid consequent mathematical 

expressions describing abstract phenomena in terms of non-abstract 

imagination, leading to a horrendous misunderstanding of the most profound 

subject of electrical engineering. 


