Validating Quantum Electrodynamics'

Interaction of Radiation with Matter

By Floyd A. Sweet. Ph.D.

Document restored by hyiq.org

Quantization of the electromagnetic field laws of classical electrodynamics appear in the form of

$$F_{\mu\nu_l p} + F_{\nu p\mu} + F_{p\mu_l \nu} = 0$$
 Eq. (1a)

$$F_{v_l v=0}$$
 Eq. (1b)

where $F_{\mu\nu}$ are components of field, E and H. There is a (Lagrangian) derivation

$$L = \frac{1}{4} F_{\mu\nu} F_{\mu\nu}$$
 Eq. (2)

It's more clearly understood to work with potentials A_{μ} defined by

$$F_{\mu\nu} = A_{\nu,\mu} - A_{\mu\nu}$$
 Eq. (3)

<u>Note:</u> The Greek subscript symbols run 1 to 4 for vectors or operators taking the value 0, 1, 2, 3, and the Latin indices run from 1 to 3 in the coordinates.

Also

$$K = (K, K_0) + (K_1, K_2, K_3, K_0),$$

$$X = (X, X_0) + (X_1, X_2, X_3, X_0).$$

The same holds for $p, q, K_6 = \omega(omega)$, = it and the units are

h = c = 1 which satisfies the equation of motion

$$A_{\mu}(x) - A_{\nu}, \mu_{\nu}(x) = 0$$
 Eq. (4)

From Equation (3) A is determined up to a gradient of a scalar function $\Lambda(X)$ i.e. $A_{\mu}{}^{l} = A_{\mu} + \Lambda_{l}\mu$ (gauge transformation). The fields $F_{\mu\nu}$ and Equation (4) remain invariant.

Simplifying Equation (4) by introducing a (Lorentz) condition on the potentials,

$$A_{\mu l \mu} = 0 \qquad \qquad \mathsf{Eq.} (6)$$

reduces Equation (4) to

$$\Box A_{\mu} = 0 \qquad \qquad \text{Eq. (7)}$$

which together with Equation (6) is equivalent to Maxwell's equations.

<u>However</u>, condition (7) still does not determine uniquely A_{μ} , but now the gauge transformation restricts the class of function Λ to solutions of the equation

$$\Box \Lambda = 0 \qquad \qquad \text{Eq. (8)}$$

on account of photon mass = 0 the fields $F_{\mu\nu}$ and not the potentials A_{μ} have a direct physical meaning this however is not the case if $m \neq 0$.

The canonical (momenta) variables $\pi_{\mu}(X)$ corresponding to Equation (3)

are

$$\pi_{\mu} = 1 F_{4\mu} (X)$$
 Eq. (9)

Thus $\pi_4 = 0$ so Equation (9) cannot be solved by $A_{\mu\alpha}$. Now it is evident Equation (2) is invalid. How do we then validate the quantization of free (so-called Maxwellian) fields?

Solution:

The Lagrangian Equation (3) is replaced by

$$L = -\frac{1}{2} F_{\mu\nu}F_{\mu\nu} - \frac{1}{2} A_{\mu l} m A_{\nu l\nu} = -\frac{1}{2} A_{\mu l\nu}A_{\nu l\mu} \quad \text{Eq. (10)}$$

from which the canonical momenta are given by

$$\pi_l(X) = 1 F_4(X)$$
 Eq. (11a)

and

$$\pi_4(X) = lA_{v,v}(X)$$
 Eq. (11 b)

and hence instead of Equation (8), we obtain the weaker condition

$$\Box A_{\nu \nu}(X) = 0 \qquad \qquad \text{Eq. (12)}$$

which follows from Equation (4).

The invalidity occurs when one takes the general solution of the equation only those which satisfy the initial conditions when t = 0.

 $A_{v,v}(X) = 0, A_{v,ov}(X) = 0$ for all values of X then from Equation (12)

it follows that $A_{vlv}(X)$ vanishes for all t. This is in agreement with the formulation of the theory of electromagnetism.

The above is stated to avoid the expressions describing a conceptual fallacy leading to an enormous number of invalid consequent mathematical expressions describing abstract phenomena in terms of non-abstract imagination, leading to a horrendous misunderstanding of the most profound subject of electrical engineering.